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Conjugate Gradient Methods with an Application to
V/STOL Flight-Path Optimization

R. K. MEarA* AND A. E. Bryson Jr.T
Harvard Unaversity, Cambridge, Mass.

Conjugate gradient methods have recently been applied to some simple optimization prob-
lems and have been shown to converge faster than the methods of steepest descent. The
present paper considers application of these methods to more complicated problems involving
terminal constraints. As an example, minimum time paths for the climb phase of a V/STOL
aircraft have been obtained using the conjugate gradient algorithm. In conclusion, some
remarks are made about the relative efficiency of the different optimization schemes presently
available for the solution of optimal control problems.

I. Introduction

ESTENES and Stiefel' in 1952 introduced the method of
conjugate gradients for solving linear sets of equations.
The same method was used by Fletcher and Reeves? in 1964
to solve nonlinear programming problems. Hayes? extended
the method in 1954 to the solution of linear problems on
Hilbert spaces. Antosiewicz and Rheinboldt! derived, in
1962, convergence rates for these problems, and showed that
convergence is obtained at a geometrically fast rate for the
linear-quadratic problem. Improved estimates of rates of
convergence were obtained by Daniel® in 1965. Lasdon,
Mitter, and Warren® applied this method, in 1966, to the
solution of optimal control problems. They showed that the
conjugate gradient method converged faster than the steepest-
descent method on a number of problems. Sinnot and Luen-
berger” recently used another variant of the conjugate gradient,
method and gave similar results. In addition, they extended
the method to handle linear terminal constraints. However,
most of the optimal control problems solved so far®? using
conjugate gradient methods have been simple in structure,
involving either no or very few terminal constraints.

II. Conjugate Gradient Methods
a. Parameter Optimization

Conjugate gradient methods have the property that they
minimize a quadratic function of n variables in n steps. They
do so by generating a set of n directions known as conjugate
directions, which span the n-dimensional space. Let the func-
tion to be minimized be J = 3(x — A)7 A(x — &) and let po, py,

.., Pna1 ben vectors in Euclidean n space. They will be called
“A-orthogonal” or “A-conjugate,” if and only if

pTAp; = 0, UEE] M

where A is a positive definite matrix.
Therefore,
pTAp; > 0, if p;# 0 (2)
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It is easy to show that n “A-conjugate” vectors are linearly
independent and form a basis for the n-dimensional space.
If z, is the initial guess, then (h — xy) can be expressed in
terms of this basis as follows:

n—1
h — To= E ;Olipi (3)
i=0

where

o = —pTA(xe — h)/pTAp: = —pTg/pTAp:  (4)

where gy = A(zy — h) is the gradient vector dJ /0% |, — 4.
All conjugate gradient algorithms generate conjugate direc-
tions in some manner. They can be generated, for example,
by a Gram-Schmidt orthogonalization procedure starting
from any arbitrary set v, v, ..., 0, —1 of vectors. It can
be shown that if »; are the coordinate vectors, then the con-
jugate gradient method is funectionally equivalent to the
gaussian elimination procedure. A convenient choice for
v; is the negative gradient vectors or the residue vectors r;;

i = —g; = A(h — x) (5)
This choice leads to a number of simplifications and, finally,

the following algorithm is obtained. Details of the proof can
be found in Beckman!4;

2o arbitrary, go = g(xo), Do = —go,
Tivr = & + aippi where oy = —pTg:;/pTAp:;  (6)

where 8; — g + 1”2/”91|

Piv1 = —@i+1 + By

)

This algorithm can be used for nonlinear programming
problems as well. However, the matrix 4 is no longer a con-
stant matrix, and must be computed at each step. One can
avoid this by noting that, if J is minimized along the direction
(x: 4 cip;) with respect to ¢;, the optimum value of ¢; is
exactly a..'* Notice that, if 3, = 0, the conjugate gradient
method becomes a steepest-descent method.

The conjugate gradient algorithm has a number of inter-
esting properties.  Rutishauser® compares it with other
gradient methods and shows that it is the best method in a
class of iterative gradient procedures for solving linear sets
of equations. If e denotes the error vector (h — x;), it can
be shown that ||e +1|| < ||e] for all &. Also, it can be shown
that J is decreased at each step. Geometrically, p; is the pro-
jection of the negative gradient vector g; on to the subspace
spanned by pi;, Di+1, - - ., Po—1. Thus we successively reduce
the dimension of the subspace onto which —g; is projected.
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b. Optimal Control Problems

Conjugate gradient methods can be readily extended to
Hilbert spaces.®® Consider the Mayer problem in the Calculus
of Variations:

Find u(t) to minimize

J = ¢[z(ty)], subject to & = f(z,u,t) (8)

z(ty) and i, are given, but x(t;) is free. =z isann X 1 state
vector and u is an r X 1 control vector, both functions of
time variable ¢.

The Hamiltonian of the system is

H = \f 9

and the adjoint equations are

N = —f.TA (10)
Ay = @fx(ty), t] (11)

Let
g(t) = dH/Qu = \T(df/du) (12)

g 1s a veetor of functions and relates &J to du (Ref. 10,
Chap. II)

8 = /" gbu dt (13)
0

1
g plays the role of gradient vector in the finite dimenstonal
case.

The same algorithm [Eqs. (6) and (7)] applies except that
the scalar multiplications are changed to integrations, e.g.,

ty
g:l? =f g:7g. dt
to

It is necessary to store a direction of search to calculate
the next direction of search. A cubic interpolation scheme? is
used for one-dimensional search. It uses all the information
available, i.e., J(w), J(u:+1), 0J(w)/0c:, OJ (u: +1)/Oc; to
fit the “smoothest curve” through the points w; and w .,
i.e., the curve which minimizes the integral

[} daz 7

where «; 1s the step size.

III. Terminal Constraints

The conjugate gradient algorithm as given previously
applies only to unconstrained minimization problems. Modifi-
cations to the algorithm are necessary when there are con-
straints on the problem. A fairly general optimization problem
with terminal constraints can be stated as follows: Find u(t)
to minimize

J = lz(t), ] (14)
subject to
z = f(z,u,t); z(ty) given (15)
and

Yla(t), 4] = 0
Qz(t), 4] =0

q terminal eonstraints (16)
stopping condition for determining ¢, (17)

In effect, there are (¢ 4+ 1) terminal constraints. Any one
of these can be chosen as a stopping condition. This is an
unnecessary, arbitrary, but useful device.

Two of the numerical methods for solving such problems
are given below.
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a. Penalty Funetion Method

The objective function J is modified using a quadratic
penalty function

J =J +yTKY (18)

where K is a positive definite matrix of penalty function
constants. A sequence of unconstrained J problems is solved
with increasing values of K. In the limit as K — « we get
¥ — 0, J > Jopt, 4 — Uop. To check the efficiency of this
method, it was used to solve a number of problems. The
method worked quite well on linear-quadratic problems and
simple nonlinear problems. Examples 1 and 2 of Ref. 6 were
solved in one computer run by using a large enough value of
K. The minimum-time Earth-to-Mars orbit transfer problem
of Ref. 9 converged in 18 iterations starting from a stepped
nominal and using about 1 min of IBM 7094 computer time.

However, when this method was tried on flight-path optimi-
zation problems involving aerodynamic drag and lift terms,
the method ran into difficulties whenever the number of
terminal constraints was increased beyond two. For a typical
problem involving three state variables, V (velocity), & (alti-
tude), and v (flight-path angle), the convergence was ex-
tremely slow if terminal constraints were put on all the three
state variables simultaneously. Since, for most of these prob-
lems, the terminal time is not specified, some sort of stopping
condition is needed to determinc ¢; at each iteration. In this
way, one of the constraints is automatically satisfied. It was
found that the penalty function method could be used to
handle, at most, two terminal constraints. If there were more
terminal constraints, the convergence was extremely slow.

Various other types of penalty functions can be used. How-
ever, there is one common difficulty, viz., addition of penalty
functions may change the problem completely creating narrow
valleys in the state space. An example of this type is given
in Ref. 10, Chap. 1. Itis well known that gradient procedures
converge very slowly under such conditions. Ho® discusses
the difficulties that may arise in such cases if the steepest-
descent method is used. Use of the conjugate gradient method
seems to remedy these difficulties only partially. Even though
it works well on linear-quadratic problems, and simple non-
linear problems, it works poorly on complicated nonlinear
problems of the type indicated previously.

b. Gradient Projection Method

Gradient projection methods have been used in parameter
optimization and in optimal control problems'®® using a
steepest-descent method. The same method can be used with
the conjugate gradient method to handle linear terminal
constraints.” If the step size a; is small enough so that lineari-
zation is valid, the same method should work for nonlinear
constraints as well.{

An expression for the projected gradient § is given in Ref.
10;

g = fuTNe — Nlydyy ™ yg) (19)
where

o = —fThg; No(ty) = &:7[2(t), 1] (20)
Moo= =N M) = $Tlz(), b 2n
Iy = / YONELSIN, (22)

t

tr .

T, = [ NoTfufuTAs df (23)

0

Directions of search p; may be generated using i, pi-1
and Eqs. (6) and (7).§ If a change dy is desired in the con-

1 The authors do not have computational experience with this
method.

§ Directions p; will not be conjugate in general except for the
linear quadratic problem with lincar terminal constraints (see
Ref. 17).
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straint level ¥, the control change & is given by
du = fu ™ALyt dY (24)
The conjugate gradient algorithm is modified as follows:
Wir1 = Ui + MiPi (25)

1) Start with m; = 1 and obtain «; by a one-dimensional
search. 2) Calculate the value of ¥+ 1(t) using @ 3. If
linearization holds, . + 1(¢,;) should be the same as y:(t/).
not, reduce m; so that ||Yi+1 — where € is a small
positive number. 3) Choose dy; and calculate the correspond-
ing Bu,-. Add this to Wi +1 Uis1 = Wi+ + Sui. Note that
dy: should not be so large that the linearity assumption is
violated.

If this algorithm is used on a linear-quadratic problem
with linear terminal constraints, the directions of search p;,
7 =0, n — 1 will be conjugate and convergence would be
obtained at a geometrically fast rate.> For a nonlinear prob-
lem, however, the directions p;, ¢ = 0, n — 1 will not be
conjugate in general, because of the dependence of A\, on w
and the addition of éu from Eq. (24) at each step. To bypass
this difficulty partially, one may try to satisfy the terminal
constraints first and then hold them econstant using the
gradient projection scheme. This method may work well if
the constraints are linear, but if the constraints are highly
nonlinear, m; will have to be chosen small enough so that
linearization holds. In such a case, it might be better to
approach near the optimum using the penalty function
method and then refine the solution using the gradient pro-
jection method. Typically, in most of the optimization prob-
lems, the step size du; gets smaller and smaller as one ap-
proaches the optimum; so the linearization assumption would
not be violated and the gradient projection method would
generate nearly conjugate directions near the minimum.

IV. Flight Path for Minimum-Time Climb
of a V/STOL Aircraft

Compared to conventional aircraft, V/STOL aircraft have
an extra control variable, namely the angle between the thrust
direction and a reference axis in the aireraft. It is of interest
to know how this extra control variable may be used to im-
prove the performance of the aireraft.

If a flight is long enough, it can be divided into three paths:
1) climb phase starting from theé ground and going up to
some cruise condition, 2) cruise at some constant altitude
and velocity, and 3) landing phase. Depending on the par-

ticular use to which the V/S8TOL aireraft is put, there may -

be flight-path constraints on paths 1 and 3. If the cruise con-
ditions are known, the optimization problem reduces to
optimization of the two arcs 1 and 3 separately, because the
cruise conditions specify the state completely at the end of
path 1 and at the beginning of path 3.

Here, we shall consider the hypothetical jet-lift aircraft of
Ref. 12. Gallant® has considered a tilt-wing V/STOL aircraft
and obtained minimum-direct-cost flight paths for a 50-mile
flight starting from the end of the transition to the beginning
of the retransition.

L+0Dm

T
/<VEHICLE ZERO
LIFT AXIS
< v
vt \8
HORIZONTAL

—

D +Dpy

Om=Momentum Drog Along V- oxis
mg Dm=Momentum Drog L To V-axis

Fig. 1 Vector diagram of a V/STOL aircraft.
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(a+1)

RATE OF AIR FLOW = M
EXIT VELOCITY OF GASES =V

Force along V axis = F, = I\~/1\/e cos {(@+i)~ My
Force L to V direction = Fy = Mve sin(@+i)

Thrust T= MV, ~MV{ Equal net force when (+i) =Q)
S FysTeos (@+i) = MV (1 —cos{a+i))
Fy=T sin (@+i) + MV sin (a+i)

Fig. 2 Thrust diagram of tilt-jet.

Problem Formulation

The aircraft will be approximated as a mass point. Figure 1
shows the forces acting on the aircraft. Figure 2 shows the
thrust foree in greater detail. It is assumed that the jet inlets
are always pointed in the direction of the relative wind
velocity. This approximation is reasonable in view of the
rather erude model assumed for the V/STOL aireraft and in
view of the final results which show that the angle of attack
is kept small during most of the flight.

;= zcos(a +1) — D_ gsiny — M V1 — cos(a +1)] (26)
m m m

7= sin(e ) + o~ Leosy + ~sm<a i) @)

V V
h = V siny (28)
& = V cosy (29)
where

Lift: L = 1pV°C38 30)

Drag: D = 1pV2C,8 (31)

Cr=Cra (32)

Cp = Cpy + Cpy0? (33)

Air Density: p = 0.0023769(1 — 0.6875 X 107%)4%8  (34)

Equation (34) holds for 2 < 36,000 ft.
The characteristics of the hypothetical aircraft are

Thrust: 7T = To(1 — 0.55k/30,000) where £ is in ft

Mass: m = 56,902/32.2 slugs (taken as constant during
climb)

Rate of Airflow: M =
in b

To/ (65 X 32.2) slugs/see if T, is

Wing Area: S = 421 ft?
Cr, = 5.73, Cp, = 0.027, Cp, = 1.93

The maximum (L/D) ratio is 12.6 and occurs at a = 6.8°.

There are three control variables in the problem: magni-
tude of thrust vector (To), (0 € Ty € Ton..); direction of
thrust vector (¢); angle of attack (a) or pitch angle (6). It is
preferable to use 8 instead of a as the control variable. The
use of 8 as the control variable adds extra damping terms into
the equations of motion which help in convergenee of numer-
ical computations of optimal flight paths.

We shall obtain minimum time paths under the following
assumptions:

1) Thrust Ty is kept constant at its maximum value. This
is a reasonable assumption for the climb phase of the flight.
In particular, we shall use 7y = 1.25 mg.

2) Initial conditions for the problem are

V©0)=0, RO) =0, z(0) =0
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The v equation has a singularity at V = 0. To integrate
the equations of motion numerically, we must start with a
finite V. The aircraft would attain this velocity after flying
for some time, say #, in some particular manner. This part
of the flight may be partially or completely determined by
restrictions on the runway available for takeoff, e.g., if the
aircraft must take off vertically, then v(f) = 90° where ¢,
will be some time either during or at the end of the vertical
takeoff period. We now consider a few specific cases.

Unconstrained Takeoff

At the beginning of our investigation, we did not know
whether this V/STOL aircraft should take off like a conven-
tional aireraft (by first picking up speed along the runway)
or whether it should take off directly making some angle
¥(0 4) > 0 to the horizontal. Hence, we solved the uncon-
strained problem treating ¥ (f;) as a control parameter, allow-
ing altitude to go negative if this was optimal.

The initial velocity for this case was taken as (treating ¢,
as starting time denoted by 0) V(0) = 50 fps. Since v(0) was
to be chosen optimally, the optimization process had to drive
A (0) to zero. Changing A(0) from several hundred feet to
zero did not change the results significantly, so 2(0) = 0 was
used. The final time ¢, was minimized with the terminal con-
ditions y(¢,) = 0, A(t;) = 20,000 ft, V{t;) free, z(t;) free.

1200

1000

800

VERTICAL ThKE-OFF 7 4/
/

600 UNCONSTRAINED TAKE-OFF

400

VELOCITY, V ~ FT/SEC.

200

12%
501

40,000

| { I
10,000 20,000 30,000

RANGE, x~FT

Fig. 4 Velocity vs range for 1) unconstrained takeoff and
2) vertical takeoff.

A constraint on V(f;) can be met fairly easily by changing
the thrust magnitude and/or 8 and 7 towards the end of the
climb phase. The control variables used here were 8 and <.

Figures 3, 4, 5a, and 6-8 show the results obtained for the
case when there were no constraints on takeoff. The optimum

61.5

450°

2.5°

y, (a+t}, (a+i+y) ~ DEG.

2.8

Fig. 5a) Flight-path angle v, (« + i), and thrust direction
(e + i 4+ v) vs time for unconstrained takeoff.

90°

675

45

225

FLIGHT- PATH ANGLE . >~ DEG.
THRUST DIRECTION ANGLE,(a~+i)~DEG.

TIME ~ SEC

-25

Fig. 5b) Flight-path angle and (« + i) vs time with verti-
cal takeoff constraint.
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2 < VERTICAL TAKE-OFF
- s UNCONSTRAINED i 5
b TAKE - OFF E o . Y S
Z . 10 2 30 ) 50 60
st . & TIME~SEC.
z 3 -u5- -
- =<
3 0 1 I 1 !
S O Y R YR _is'k i
TIME~SEC.
~22.5%
BT ¥ S
Fig. 8 Angle of attack vs time for 1) unconstrained takeoff

Fig. 6 Pitch angle 6 vs time for 1) unconstrained takeoff
and 2) vertical takeoff.

value of ¥(0) at V' = 50 fps turns out to be about 7°. How-
ever, the interesting fact is that v soon becomes negative and
the aircraft goes about 300 ft underground. Reasons for this
seem to be

1) the thrust is greater at lower altitudes;

2) the aircraft should pick up velocity as fast as p0551b1e
in order to generate aerodynamic lift. Lift obtained from
tilting the jet is not very efficient because it gives lots of
momentum drag. The angle (« + ?) is apparently kept low
(about 11°) in order to keep this drag low (cf. Fig. 5a).

To keep the pressure drag low, angle of attack is also kept
small (mostly about 2°), as shown in Fig. 8. The aircraft dives
down because gravity helps it in picking up speed. Figure 4
shows velocity vs range. A maximum velocity of 1025 fps is
attained towards the end of the climb. Figure 9 shows the
time history of the total lift over drag ratio, viz., (I + D’.)/
(D 4+ D.). This ratio is rapidly increased to a maximum of
about 12 and is maintained in the vieinity of 6 for most of the
flight.

After the aircraft has picked up velocity during the diving
maneuver, v increases quickly to a maximum value of 56.6°
(Fig. 5a). Figure 3 shows how % increases during this phase.
However, 6 also increases at the same time, so thata = 8 — =y
remains small. Jet-tilt angle 7 is also kept small. Thus, the
total drag is kept low. The lift force reaches a maximum value
of about 70,000 1b. This maneuver is followed by a rapid
change in 8 to a negative value of about —25°. This is neces-
sary to meet the terminal condition on v, viz., y(f;) = 0.
The aircraft experiences a downward acceleration of 10g. The
total time taken by the aircraft is 53 sec. Calculations show
that if the aircraft is made to climb vertically all the way up
from the ground, it takes twice as much time. The velocity in
that case never exceeds 300 fps.

Thus, the results show that a V/STOL aircraft without
takeoff constraints should fly very much like a conventional
aircraft. Aerodynamic lift is more efficient than jet-lift. On
the other hand, the aircraft should keep angle of attack small
to keep aerodynamic drag low.

w©
<

-
=
“
T
i

o~ VERTICAL TAKE - OFF

s
<
1

¥+ UNCONSTRATNED TAKE -OFf .

JET~TILT - ANGLE, i~DEG.

=3

1
D) 0 50 60 10
TINE ~ SEC.

Fig. 7 Jet-tilt angle i vs time for 1) unconstrained takeoff
and 2) vertical takeoff.

and 2) vertical takeoff.

Horizontal Takeoff Constraint

Imposing the constraint that the aircraft cannot go under-
ground, numerical results show that the optimal path is along
h = 0 until the vehicle reaches V = 300 fps, when the path
starts up. Thus, for the fastest climb-out this STOL aircraft
should fly parallel to the ground at low altitude for a consider-
able distance!

Vertical Takeoff Constraint

Next we consider the restriction that the aireraft must fly
vertically up to an altitude of 1000 ft. From the results
obtained previously, it appears that the best way to do this
would be to make & = 90° so that « =0, 2 =0, v = 0.
Integration of the V equation gives V = 125 fps at k = 1000
ft. Time taken is 8 sec. The optimization problem is now
solved with the following initial conditions: V(8) = 125 fps,
v(8) = 90° h(8) = 1000 ft, z(8) = 0.

The results are shown in Figs. 3, 4, 5b, and 6-8. The total
path (from takeoff) is 60 sec long and is similar to the uncon-
strained takeoff case. The aircraft goes up first due to positive
7, but soon dives down to a minimum altitude of about 980 ft.
The control variables 6 and ¢ have discontinuities at { = 8
sec when the constraints are relaxed.

Similar behavior would be obtained if the aircraft were
constrained to take off at some other constant value of flight-
path angle y¢. The equation v = 0 determines one of the
control variables in terms of the other (say 7 in terms of ).
If @ is constrained by 8 < ¢, as in the previous case, one
would intuitively expect that  would remain constant at vye.

15.0

10.0

(Lift/Drag) Ratio

Time ~ Sec

-10.0 -

Fig. 9 Time history of (L/D) ratio for unconstrained
takeoff.
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Other Constraints

A number of other physical constraints might be imposed
on the flight path. Passenger comfort dictates that the
accelerations be kept less than about 1 ¢ and the pitch angle
be limited to about 30°. These constraints can readily be
incorporated in the optimization problem. In most of the
cases, the result of imposing a constraint is to put the con-
strained variable on the boundary for part of the flight if, in
the unconstrained optimal path, it exceeds the constrained
value. These constraints have been considered in Ref. 18.

Y. Conclusion

Our computational experience has shown that the conjugate
gradient method, though very efficient for simple optimization
problems, may run into difficulties when applied to more com-
plicated problems. Some of the difficulties that may be
encountered are

1) Gradient of the objective function with respect to the
step size may not become zero or small enough during one-
dimensional search. Accumulation of errors due to this source
can produce directions of search which increase rather than
decrease the performance index.**

In such cases, it was found useful to revert back to the local
gradient direction and start the process over again. This
procedure is similar to the one suggested by Beckman and
also used by Fletcher and Reeves? for nonlinear programming
problems.

2) Use of penalty functions may ereate narrow valleys in
the state space and make convergence extremely slow. The
use of the gradient projection method, though more compli-
cated, may help in this case, particularly near the optimum.

Conjugate Gradient Methods vs Steepest-Descent Methods

1) For optimal control problems having either no or few
constraints, conjugate gradient methods, though requiring
more programming, seem to be faster than the steepest-descent
method of Ref. 16.

2) For optimal control problems with a large number of
constraints, it becomes necessary to limit the step size of
conjugate gradient methods during the one-dimensional
search, and the directions of search are then no longer con-
jugate to each other. In nonlinear problems with nonlinear
constraints, our limited experience indicates that conjugate
gradient methods are not as effective as steepest-descent
methods when starting far from the optimum.

Conjugate Gradient Methods vs Second Variation Methods

1) Conjugate gradient methods require less programming
and less computation per iteration than second variation
methods.

2) Second variation methods require the matrix of second
variations of the Hamiltonian with respeet to the control
(H..) to be nonsingular. Conjugate gradient methods do not
require this.

3) Conjugate gradient methods do not converge to ex-
tremals containing conjugate points, whereas second variation
methods try to converge towards these extremals.

*Refer to KEq. (7). During the one-dimension search,
aJ /dc(x; + ¢ip:) = ginTp: should be made zero. But if
gi1™p; > 0, then during the next iteration, the quantity
GinTpit = —||gin? + BiginTp: can become positive if the
second term is larger than the first.

J. AIRCRAFT

4) Second variation methods lead to more accurate solu-

tions than conjugate gradient methods, particularly to better
control histories.
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